Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

Пермский национальный исследовательский политехнический университет

УТВЕРЖДАЮ

Проректор по образовательной деятельности

А.Б. Петроченков « 12 » апреля 20 23 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Дисциплина:	Физика					
	(наименование)					
Форма обучения:	очная					
	(очная/очно-заочная/заочная)					
Уровень высшего образован	ния: бакалавриат					
	(бакалавриат/специалитет/магистратура)					
Общая трудоёмкость:	396 (11)					
	(часы (ЗЕ))					
Направление подготовки:	20.03.02 Природообустройство и водопользование					
	(код и наименование направления)					
Направленность: При	родообустройство и природоохранная деятельность					
	(наименование образовательной программы)					

1. Общие положения

1.1. Цели и задачи дисциплины

Иизучить физические явления и законы физики, границы их применимости, применение законов в важнейших практических приложениях; познакомиться с основными физическими величинами, знать их определение, смысл, способы и единицы их измерения; представлять себе фундаментальные физические опыты и их роль в развитии науки; знать назначение и принципы действия важнейших физических приборов;

- приобрести навыки работы с приборами и оборудованием современной физической лаборатории; навыки использования различных методик физических измерений и обработки экспериментальных данных; навыки проведения физического и математического моделирования, а также применения методов физико-математического анализа к решению кон-кретных естественнонаучных и технических проблем;
- уяснить логические связи между разделами курса физики, выработать представление о том, что физика является универсальной базой для тех-нических наук, и что те физические явления и процессы, которые пока ограниченно применяются в технике, в будущем могут оказаться в центре новаторских достижений инженерной мысли.

Задачи дисциплины:

В результате изучения дисциплины обучающийся должен (проектируемые результаты освоения дисциплины):

знать:

- основные физические явления и процессы, на которых основаны принципы действия объектов профессиональной деятельности, области и возможности применения физических эффектов;
- фундаментальные понятия, законы и теории классической и современной физики, границы применимости основных физических моделей;
- основные физические величины и константы, их определения и единицы измерения;
- методы физического исследования, в том числе методы моделирования физических процессов;
- методы решения физических задач, важных для технических приложений;
- физические основы измерений, методы измерения физических величин;
- технологии работы с различными видами информации;
- выделять физическое содержание в системах и устройствах различной физической природы;
- осуществлять корректное математическое описание физических явлений в технологических процессах;
- строить и анализировать математические модели физических явлений и процессов при решении прикладных задач;
- решать типовые задачи по основным разделам физики, используя методы математического анализа и моделирования;
- применять понятия, физические законы и методы решения задач для выполнения технических расчетов, анализа и решения практических проблем, проведения исследований в профессиональной деятельности;
- применять современное физическое оборудование и приборы при решении практических задач, использовать основные приемы оценки погрешности и обработки данных эксперимента; владеть:
- методами анализа физических явлений в технических устройствах и системах;
- навыками практического применения законов физики, в том числе при проектировании изделий и процессов;
- методами теоретического исследования физических явлений и процессов, построения математических и физических моделей реальных систем, решения физических задач;
- навыками использования основных физических приборов;
- методами экспериментального физического исследования (планирование, постановка и обработка данных эксперимента, в том числе с использованием пакетов стандартного программного обеспечения);

1.2. Изучаемые объекты дисциплины

- физические явления и процессы в природе и техногенных системах;
- физические законы, описывающие эти явления и процессы;
- приборы для исследования физических систем;
- методы исследования физических систем;
- методы формализованного описания физических систем, в том числе средствами математического и компьютерного моделирования.

1.3. Входные требования

Не предусмотрены

2. Планируемые результаты обучения по дисциплине

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
ОПК-1	' '	основные законы физики, границы их применимости, возможности использования в практических приложениях; — назначение и принцип действия важнейших физических приборов и объектов профессиональной деятельности, средств измерений и контроля; — методы решения физических задач,	Знает базовые математические и физические определения, формулы, соотношения; основы информационных технологий; основные химические законы и теории, общие закономерности протекания процессов; строение, состав, структуру материалов и способы воздействия на их свойства; тенденции развития техники и технологии в области природообустройства и водопользования	Тест

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
ОПК-1	ИД-2ОПК-1	представлений; — указывать, какие законы описывают данное явление или эффект, выделять физическое содержание в прикладных задачах, проводить поиск и систематизацию соответствующей информации; — использовать основные	базовые математические и физические методы исследований; современные информационные технологии; выполнять графические построения технические изделий; проводить химические исследования и выявлять химическую сущность проблем в профессиональной деятельности; определять механические свойства материалов; применять техники и технологий в области природообустройства и водопользования при	Коллоквиум
ОПК-1	ид-30ПК-1	принципов в важнейших практических приложениях, методами решения типовых задач; — навыками использования методов физического и математического моделирования в инженерной практике, анализа и интерпретирования его результатов, в том числе с использованием	Владеет навыками использования математического аппарата и физических закономерностей; информационных технологий; работы с химической аппаратурой, веществами и материалами; выбора материала для обеспечения надежности и долговечности эксплуатации изделий; теоретического и экспериментального исследования в теплотехнике; обоснования применения техники и технологий для	Индивидуальн ое задание

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
	систематизации, анализа и рец обобщения научно- при технической информации, вод ее интерпретации и представления в виде текстов, таблиц, графиков, диаграмм		природообустройства и	

3. Объем и виды учебной работы

Вид учебной работы	Всего	Распределение по семестрам в часах Номер семестра		
вид учесной рассты	часов			
		3	4	
1. Проведение учебных занятий (включая проведе-	140	70	70	
ние текущего контроля успеваемости) в форме:				
1.1. Контактная аудиторная работа, из них:				
- лекции (Л)	64	32	32	
- лабораторные работы (ЛР)	36	18	18	
- практические занятия, семинары и (или) другие виды занятий семинарского типа (ПЗ)	32	16	16	
- контроль самостоятельной работы (КСР)	8	4	4	
- контрольная работа				
1.2. Самостоятельная работа студентов (СРС)	220	110	110	
2. Промежуточная аттестация				
Экзамен	36	36		
Дифференцированный зачет	9		9	
Зачет				
Курсовой проект (КП)				
Курсовая работа (КР)				
Общая трудоемкость дисциплины	396	216	180	

4. Содержание дисциплины

Наименование разделов дисциплины с кратким содержанием		ем аудито по видам	•	Объем внеаудиторных занятий по видам в часах
	Л	ЛР	П3	CPC
2-й семес	тр			

Наименование разделов дисциплины с кратким содержанием		ем аудитој по видам ЛР	-	Объем внеаудиторных занятий по видам в часах СРС
Movovyvo	10	6	6	36
Механика	10	0	0	30
Тема 1. Кинематика. Основные кинематические характеристики прямолинейного и криволинейного движения: скорость и ускорение. Нормальное и тангенциальное ускорение. Ки-нематика вращательного движения: угловая скорость и угловое ускорение, их связь с линейными скоростью и ускорением. Прямая и обратная задачи кинема-тики. Законы равномерного и равнопеременного движения. Тема 2. Динамика поступательного движения. Инерциальные системы отсчета и первый закон Ньютона. Второй закон Ньютона. Масса, импульс, сила. Уравнение движения материальной точки и механической системы. Третий закон Ньютона и закон сохранения импульса. Закон всемирного тяготения. Силы упругости и трения. Тема 3. Динамика вращательного движения. Момент импульса материальной точки и механической системы. Момент силы. Уравнение моментов. Закон сохранения момента импульса механической системы. Основной закон динамики вращательного движения твердого тела с за-крепленной осью вращения. Момент импульса тела. Момент инерции. Теорема Штейнера. Тема 4. Работа. Энергия. Сила, работа и потенциальная энергия. Консервативные и неконсервативные си-лы. Работа и кинетическая энергия при поступательном и вращательном движении. Закон сохранения полной механической энергии в поле потенциальных сил. Столкновения тел. Абсолютно упругое столкновение. Тема 5. Элементы механики сплошных сред. Общие свойства жидкостей и газов. Стационарное течение идеальной жидкости. Уравнение Бернулли. Идеально упругое тело. Упругие напряжения и деформации. Закон Гука. Модуль Юнга.	6	4	4	24
	_	4	4	24
Тема 6. Кинематика колебаний. Амплитуда, частота и фаза колебаний. Закон гармонических колебаний; их изо-бражение на графиках и векторных диаграммах. Сложение колебаний (биения, фигуры Лиссажу). Разложение и синтез колебаний. Тема 7. Динамика колебаний. Идеальный гармонический осциллятор. Квазиупругая сила. Уравнение идеаль-ного осциллятора и его решение. Маятники. Превращения энергии при колеба-ниях. Свободные затухающие колебания осциллятора с потерями. Вынужденные колебания. Резонанс. Тема 8. Волны. Волновое движение. Плоская гармоническая волна. Длина волны, волновое				

Наименование разделов дисциплины с кратким содержанием	Объем аудиторных занятий по видам в часах		Объем внеаудиторных занятий по видам в часах СРС	
число, фазовая скорость. Уравнение волны. Одномерное волновое уравнение. Упругие волны. Интерференция волн. Стоячие волны.	Л	ЛР	ПЗ	CFC
Термодинамика и статистическая физика	8	2	2	20
Тема 9. Молекулярно-кинетическая теория. Параметры состояния идеального газа. Давление газа с точки зрения МКТ. Рав-нораспределение энергии молекулы по степеням свободы. Уравнение состояния идеального газа. Законы для изопроцессов. Среднеквадратичная скорость. Ре-альные газы. Уравнение Ван-дер-Ваальса. Диаграммы фазовых состояний. Рас-пределение Максвелла для модуля и проекций скорости молекул идеального газа. Экспериментальное обоснование распределения Максвелла. Распределение Больцмана и барометрическая формула. Тема 10. Феноменологическая термодинамика. Термодинамическое равновесие и температура. Нулевое начало термодинамики. Эмпирическая температурная шкала. Квазистатические процессы. Обратимые и необратимые процессы. Энергия молекулы, внутренняя энергия идеального газа. Первое начало термодинамики. Теплоемкость. Уравнение Майера. Изохорический, изобарический, изотермический, адиабатический процессы в идеальных газах. Преобразование теплоты в механическую работу. Цикл Карно и его коэффициент полезного действия. Энтропия. Второе начало термодина-мики. Тема 11. Элементы физической кинетики. Явления переноса. Диффузия, теплопроводность, внутреннее трение. Броуновское движение.				
Электростатика и постоянный электрический ток	8	6	4	30
Тема 12. Электрическое поле в вакууме. Закон Кулона. Напряженность электростатического поля и принцип суперпози-ции. Работа по перемещению заряда в электрическом поле. Потенциальная энергия, потенциал. Разность потенциалов. Теорема Гаусса в интегральной форме и ее применение для расчета электрических полей. Тема 13. Проводники в электрическом поле. Равновесие зарядов в проводнике. Основная задача электростатики проводни-ков. Эквипотенциальные поверхности и силовые линии электростатического поля между проводниками. Электростатическая защита. Емкость проводников и конденсаторов. Энергия заряженного конденсатора. Тема 14. Диэлектрики в электрическом поле. Электрическое поле диполя. Диполь во внешнем электрическом поле. Поляриза-ция диэлектриков.				

Наименование разделов дисциплины с кратким содержанием		ем аудито по видам ЛР	•	Объем внеаудиторных занятий по видам в часах СРС
	JI	ЛР	113	CPC
Ориентационный и деформационный механизмы				
поляриза-ции. Вектор электрического смещения (электрической индукции). Диэлектриче-ская				
проницаемость вещества. Электрическое поле в				
однородном диэлектрике. Тема 15. Постоянный				
электрический ток. Сила и плотность тока.				
Классическая теория электропроводности, условия ее				
применимости и противоречия с				
экспериментальными результатами. Закон Ома в				
дифференциальной и интегральной формах. Закон				
Джоуля-Ленца. Элек-тродвижущая сила источника				
тока. Правила Кирхгофа.				
ИТОГО по 2-му семестру	32	18	16	110
3-й семес	<u></u> г n			
Магнетизм	10	8	6	34
Тема 16. Магнитостатика. Магнитное				
взаимодействие постоянных токов. Вектор				
магнитной индукции. Закон Био-Савара-Лапласа.				
Сила Лоренца. Закон Ампера. Движение зарядов				
вэлектрических и магнитных полях. Магнитный				
поток и теорема Гаусса для магнитных полей.				
Теорема о циркуляции (закон полного тока). Расчет				
маг-нитных полей. Тема 17. Магнитное поле в				
веществе. Магнитное поле и магнитный дипольный				
момент кругового тока. Намагничение магнетиков.				
Напряженность магнитного поля. Магнитная				
проницаемость. Классификация магнетиков.				
Ферромагнетизм. Тема 18. Электромагнитная				
индукция. Феноменология электромагнитной				
индукции. Правило Ленца. Уравнение				
электромагнитной индукции. Самоиндукция.				
Взаимоиндукция. Индуктивность соленоида.				
Включение и отключение катушки от источника				
постоянной эдс. Энергия магнитного поля. Тема 19.				
Электромагнитные колебания. Гармонические колебания в контуре. Энергетические процессы в				
контуре. Вол-новое сопротивление. Затухающие				
колебания в контуре. Реактивные (емкостное и				
индуктивное) сопротивления. Характеристики				
затухания. Вынужденные колебания в				
последовательном контуре. Резонанс. Резонансные				
кривые для за-ряда, напряжения, тока. Тема 20.				
Уравнения Максвелла. Система уравнений				
Максвелла в интегральной форме и физический				
смысл ее уравнений. Тема 21. Электромагнитные				
волны. Плоские и сферические электромагнитные				
волны. Правая тройка векторов E, B, v. Волновое				
уравнение. Поляризация волн.				
		_		
Оптика	10	6	6	32
		<u> </u>		

Наименование разделов дисциплины с кратким содержанием	занятий	Объем аудиторных занятий по видам в часах		Объем внеаудиторных занятий по видам в часах
Тема 22. Интерференция. Интерференционное поле от двух точечных источников. Опыт Юнга. Интерферометр Майкельсона. Интерференция в тонких пленках. Многолучевая интерференция. Тема 23. Дифракция. Принцип Гюйгенса-Френеля. Дифракция Френеля на простейших преградах. Дифракция Фраунгофера. Дифракционная решетка как спектральный прибор. Понятие о голографическом методе получения и восстановления изображений. Тема 24. Поляризация. Форма и степень поляризации монохроматических волн. Получение и анализ линейно-поляризованного света. Закон Малюса. Закон Брюстера. Линейное двулучепреломление. Прохождение света через линейные фазовые пластинки. Искусственная оптическая анизотропия. Циркулярная фазовая анизотропия. Электрооптические и	Л	ЛР	ПЗ	CPC
магнитооптические эффекты. Тема 25. Поглощение и дисперсия волн. Феноменология поглощения и дисперсии света.	0	4	4	20
Тема 26. Квантовые свойства электромагнитного излучения. Излучение нагретых тел. Спектральные характеристики теплового излучения. Законы Кирхгофа, Стефана-Больцмана и Вина. Абсолютно черное тело. Формула Рэлея-Джинса и «ультрафиолетовая катастрофа». Гипотеза Планка. Кван-товое объяснение законов теплового излучения. Корпускулярно-волновой дуа-лизм света. Явление фотоэффекта. Уравнение Эйнштейна для фотоэффекта. Тема 27. Планетарная модель атома. Модель атома Томсона. Опыты Резерфорда по рассеянию альфа-частиц. Ядерная модель атома. Эмпирические закономерности в атомных спектрах. Формула Бальмера. Модель атома Бора. Схема энергетических уровней в атоме водорода. Тема 28. Квантовая механика. Корпускулярно-волновой дуализм. Гипотеза де Бройля. Опыты Дэвиссона и Джермера. Дифракция микрочастиц. Принцип неопределенности Гейзенберга. Волновая функция, ее статистический смысл и условия, которым она должна удовлетворять. Уравнение Шредингера. Квантовая частица в одномерной по-тенциальной яме. Тема 29. Квантово-механическое описание атомов. Стационарное уравнение Шредингера для атома водорода. Волновые функции и квантовые числа. Правила отбора для квантовых переходов. Опыт Штерна и Герлаха. Тема 30. Оптические квантовые генераторы. Спонтанное и индуцированное излучение. Инверсное заселение	8	4	4	28

Наименование разделов дисциплины с кратким содержанием	Объем аудиторных занятий по видам в часах		Объем внеаудиторных занятий по видам в часах	
	Л	ЛР	П3	CPC
уровней актив-ной среды. Основные компоненты лазера. Условие усиления и генерации света. Особенности лазерного излучения. Основные типы лазеров и их применение. Тема 32. Элементы физики твердого тела. Структура зон в металлах, полупроводниках и диэлектриках. Проводимость металлов. Собственная и примесная проводимость полупроводников. Уровень Ферми в чистых и примесных полупроводниках. Диоды. Запирающий слой в полупроводниках.				
Ядерная физика. Физическая картина мира	4	0	0	16
Тема 33. Основы физики атомного ядра. Состав атомного ядра. Характеристики ядра: заряд, масса, энергия связи нуклонов. Радиоактивность. Виды и законы радиоактивного излучения. Ядерные реакции. Деление ядер. Синтез ядер. Детектирование ядерных излучений. Понятие о дозиметрии и защите. Тема 34. Элементарные частицы. Фундаментальные взаимодействия и основные классы элементарных частиц. Час-тицы и античастицы. Лептоны и адроны. Кварки. Электрослабое взаимодействие. Тема 35. Физическая картина мира. Особенности классической, неклассической и современной физики. Методология современных научноисследовательских программ в области физики. Основные достижения и проблемы субъядерной физики. Попытки объединения фундаментальных взаимодействий и создания «теории всего». Современные космологические представления. Изменения в технике и технологиях как следствие научных достижений в области физики. Физическая картина мира как философская категория. Парадигма Ньютона и эволюционная парадигма.				
ИТОГО по 3-му семестру	32	18	16	110
ИТОГО по дисциплине	64	36	32	220

Тематика примерных практических занятий

№ п.п.	Наименование темы практического (семинарского) занятия
1	Кинематика и динамика материальной точки и поступательного движения
2	Работа, мощность, энергия
3	Динамика вращательного движения
4	Колебательное и волновое движение

№ п.п.	Наименование темы практического (семинарского) занятия
5	Молекулярно-кинетическая теория вещества. Законы термодинамики
6	Электростатическое поле в вакууме
7	Электростатическое поле в диэлектриках и проводниках.
8	Теорема Гаусса
9	Постоянный электрический ток
10	Магнитное поле в вакууме
11	Электромагнитная индукция
12	Электромагнитные колебания
13	Интерференция света
14	Дифракция света
15	Поляризация света
16	Тепловое излучение. Фотоэффект

Тематика примерных лабораторных работ

№ п.п.	Наименование темы лабораторной работы
1	Определение объема цилиндра
2	Маятник Обербека
3	Физический маятник
4	Определение ускорения свободного падения методом оборотного физического маятника
5	Изучение свободных колебаний пружинного маятника
6	Определение вязкости жидкости методом Стокса
7	Изучение электронного осциллографа
8	Исследование электростатических полей
9	Определение электродвижущей силы и внутреннего сопротивления источника тока
10	Изучение зависимости мощности и коэффициента полезного действия источника тока от нагрузки
11	Определение магнитной индукции в межполюсном зазоре прибора магнитоэлектрической системы
12	Исследование магнитного поля кругового тока
13	Определение составляющих вектора индукции магнитного поля Земли с помощью электронно-лучевой трубки
14	Изучение явления гистерезиса с помощью электронного осциллографа
15	Изучение затухающих колебаний в контуре

№ п.п.	Наименование темы лабораторной работы
16	Изучение вынужденных колебаний в последовательном контуре
17	Определение показателя преломления твердых тел с помощью микроскопа
18	Бипризма Френеля
19	Интерференция лазерного света при отражении от толстой стеклянной пластины
20	Определение длины волны света с помощью дифракционной решетки
21	Определение степени поляризации лазерного луча. Исследование закона Малюса и закона Брюстера
22	Исследование фотоэлементов
23	Определение постоянной Стефана-Больцмана с помощью пирометра с исчезающей нитью
24	Исследование зависимости электросопротивления полупроводников от температуры
25	Исследование зависимости электросопротивления металлов от температуры

5. Организационно-педагогические условия

5.1. Образовательные технологии, используемые для формирования компетенций

Проведение лекционных занятий по дисциплине основывается на активном методе обучения, при котором учащиеся не пассивные слушатели, а активные участники занятия, отвечающие на вопросы преподавателя. Вопросы преподавателя нацелены на активизацию процессов усвоения материала, а также на развитие логического мышления. Преподаватель заранее намечает список вопросов, стимулирующих ассоциативное мышление и установление связей с ранее освоенным материалом.

Практические занятия проводятся на основе реализации метода обучения действием: определяются проблемные области, формируются группы. При проведении практических занятий преследуются следующие цели: применение знаний отдельных дисциплин и креативных методов для решения проблем и приятия решений; отработка у обучающихся навыков командной работы, межличностных коммуникаций и развитие лидерских качеств; закрепление основ теоретических знаний.

Проведение лабораторных занятий основывается на интерактивном методе обучения, при котором обучающиеся взаимодействуют не только с преподавателем, но и друг с другом. При этом доминирует активность учащихся в процессе обучения. Место преподавателя в интерактивных занятиях сводится к направлению деятельности обучающихся на достижение целей занятия.

При проведении учебных занятий используются интерактивные лекции, групповые дискуссии, ролевые игры, тренинги и анализ ситуаций и имитационных моделей.

5.2. Методические указания для обучающихся по изучению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям, лабораторным работам и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

6. Перечень учебно-методического и информационного обеспечения для самостоятельной работы обучающихся по дисциплине

6.1. Печатная учебно-методическая литература

	Библиографическое описание	Количество	
№ п/п	(автор, заглавие, вид издания, место, издательство,	экземпляров в библиотеке	
	год издания, количество страниц)		
	1. Основная литература		
1	Вотинов Г. Н., Перминов А. В. Физика: учебное пособие для вузов.	247	
	Пермь : Изд-во ПГТУ, 2008. 346 с. 21,75 усл. печ. л.		
2	Детлаф А. А., Яворский Б. М. Курс физики: учебное пособие для	100	
	втузов. 9-е изд., стер. Москва : Академия, 2014. 720 с. 58,5 усл. печ. л.		
3	Краткий курс общей физики: учебное пособие / Барков Ю. А.,	110	
	Вотинов Г. Н., Зверев О. М., Перминов А. В. Пермь: ПНИПУ, 2015.		
	406 с. 32,9 усл. печ. л.		
	2. Дополнительная литература		
	2.1. Учебные и научные издания		
1	Квантовая оптика. Атомная физика. Физика твердого тела. Физика	100	
	атомного ядра и элементарных частиц Санкт-Петербург[и др.]: ,		
	Лань, 2011 (Курс общей физики : учебное пособие для вузов : в 3 т.;		
2	Т. 3). Механика. Молекулярная физика Санкт-Петербург[и др.]: , Лань,	99	
2	2011 (Курс общей физики: учебное пособие для вузов: в 3 т.; Т. 1).	99	
	2011. (Rype comen wishkii : y leonoe noccome zam by 30b : b 3 1., 1 : 1).		
3	Электричество и магнетизм. Волны. Оптика Санкт-Петербург[и	99	
	др.]: , Лань, 2011 (Курс общей физики : учебное пособие для вузов		
	: в 3 т.; Т. 2).		
	2.2. Периодические издания		
1	В мире науки: научно-информационный журнал. Москва: В мире науки, 1983-1993, 2003		
2	Успехи физических наук: журнал. Москва: РАН: Физ. ин-т, 1918 -		
	2.3. Нормативно-технические издания		
	Не используется		
	3. Методические указания для студентов по освоению дисципли	ІНЫ	
1	Зверев О. М., Перминов А. В. Сборник задач по физике : учебное	95	
	пособие. Пермь : Изд-во ПНИПУ, 2017. 470 с. 29,5 усл. печ. л.		

4. Учебно-методическое обеспечение самостоятельной работы студента		
	Не используется	

6.2. Электронная учебно-методическая литература

Вид литературы	Наименование разработки	Ссылка на информационный ресурс	Доступность (сеть Интернет / локальная сеть; авторизованный / свободный доступ)
Дополнительная литература	Паршаков А.Н. Механика. Физика макросистем Пермь: , Изд-во ПГТУ, 2008 (Принципы и практика решения задач по общей физике: учебное пособие для вузов; Ч. 1).	http://elib.pstu.ru/Record/RU PNRPUelib2743	локальная сеть; авторизованный доступ
Дополнительная литература	Паршаков А.Н. Оптика. Квантовая физика Пермь: , Изд- во ПГТУ, 2011 (Принципы и практика решения задач по общей физике: учебное пособие для вузов; Ч. 3)		локальная сеть; авторизованный доступ
Дополнительная литература	Паршаков А.Н. Электромагнетизм Пермь: , Изд-во ПГТУ, 2010 (Принципы и практика решения задач по общей физике: учебное пособие для вузов; Ч. 2).	http://elib.pstu.ru/Record/RU PNRPUelib3083	локальная сеть; авторизованный доступ
Основная литература	Вотинов Г. Н. Физика: учебное пособие для вузов / Г. Н. Вотинов, А. В. Перминов Пермь: Изд-во ПГТУ, 2008.	http://elib.pstu.ru/Record/RU PNRPUelib2775	локальная сеть; авторизованный доступ
Основная литература	Зверев О. М. Сборник задач по физике: учебное пособие / О. М. Зверев, А. В. Перминов Пермь: Изд-во ПНИПУ, 2017.	http://elib.pstu.ru/Record/RU PNRPUelib4005	локальная сеть; авторизованный доступ

6.3. Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Вид ПО	Наименование ПО
Операционные системы	Windows 10 (подп. Azure Dev Tools for Teaching)
1 1	Microsoft Office Professional 2007. лиц. 42661567
Прикладное программное обеспечение общего назначения	Dr.Web Enterprise Security Suite, 3000 лиц, ПНИПУ ОЦНИТ 2017

6.4. Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

Наименование	Ссылка на информационный ресурс
База данных научной электронной библиотеки (eLIBRARY.RU)	https://elibrary.ru/
Научная библиотека Пермского национального исследовательского политехнического университета	http://lib.pstu.ru/
Электронно-библиотечеая система Лань	https://e.lanbook.com/
Электронно-библиотечная система IPRbooks	http://www.iprbookshop.ru/
Информационные ресурсы Сети КонсультантПлюс	http://www.consultant.ru/

7. Материально-техническое обеспечение образовательного процесса по дисциплине

Вид занятий	Наименование необходимого основного оборудования и технических средств обучения	Количество единиц
Лабораторная работа	Лабораторный стенд Механика	10
Лабораторная работа	Лабораторный стенд Оптика	10
Лабораторная работа	Лабораторный стенд Электромагнетизм	10
Лекция	Компьютер, мультимедийный проектор	1
Практическое занятие	Компьютер, мультимедийный проектор	1

8. Фонд оценочных средств дисциплины

Описан в отдельном документе	
------------------------------	--

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Пермский национальный исследовательский политехнический университет»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения промежуточной аттестации обучающихся по дисциплине «ФИЗИКА»

Приложение к рабочей программе дисциплины

Направлени	я подготовки:		
15.03.03 Прик	ладная механика		
20.03.02 Прир	одообустройство и водопользование		
28.03.03 Нано	материалы		
23.05.01 Назел	мные транспортно -технологически	е средства	
Квалифика	ация выпускника:	бакалавр,	специалист
Форма обу	чения:	<u>041</u>	ная
Kypc: 1 / 1-2	2 Семестры: 1-2/2-3		
Трудоемкост	ь:		
- кредит	ов по рабочему учебному плану:	11 3 E	
- часов п	о рабочему учебному плану:	396 ч	
Форма проме	ежуточной аттестации		
Экзамен:	1 сем. изучения Дифферент	цированный зачет:	2 сем. изучения

Фонд оценочных средств для проведения промежуточной аттестации обучающихся для проведения промежуточной аттестации обучающихся по дисциплине является частью (приложением) к рабочей программе дисциплины. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине разработан в соответствии с общей частью фонда оценочных средств для проведения промежуточной аттестации основной образовательной которая устанавливает систему оценивания результатов программы, промежуточной аттестации и критерии выставления оценок. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине устанавливает формы И процедуры текущего контроля успеваемости промежуточной аттестации обучающихся по дисциплине.

1. Перечень контролируемых результатов обучения по дисциплине, объекты оценивания и виды контроля

Согласно РПД освоение учебного материала дисциплины запланировано в течение двух семестров (1-2 или 2-3 семестров учебного плана) и разбито на 8 учебных модулей. В каждом модуле предусмотрены аудиторные лекционные, практические и лабораторные занятия, а также самостоятельная работа студентов. В рамках освоения учебного материала дисциплины формируются компоненты компетенций знать, уметь, владеть, указанные в РПД, которые выступают в качестве контролируемых результатов обучения (табл. 1.1).

Контроль уровня усвоенных знаний, освоенных умений и приобретенных владений осуществляется в рамках текущего, рубежного и промежуточного контроля при изучении теоретического материала, решении задач, сдаче отчетов по лабораторным работам и экзаменов / дифференцированных зачетов. Виды контроля сведены в таблицу 1.1.

Таблица 1.1. Перечень контролируемых результатов обучения по дисциплине

Контролируемые результаты обучения по дисциплине (ЗУВы)	Вид контроля			
	текущий	рубежный		итоговы й
	C, TO	КР	ОЛР	Экзамен
Усвоенные знания				
3.1 - основные физические явления и основные законы физики, границы их применимости, возможности использования в практических приложениях;	C, TO	KP1-8		ТВ
3.2 - основные физические величины и физические константы, их определение, смысл, единицы их измерения;	C, TO	KP1-8		TB
3.3 - основные методы физического исследования, в том числе фундаментальные физические опыты и их роль в развитии науки;	C, TO	KP1-8		TB
3.4 - назначение и принцип действия важнейших физических приборов и объектов профессиональной деятельности, средств измерений и контроля;	C, TO		ОЛР	ТВ
3.5 - методы решения физических задач, соответствующих элементам профессиональной деятельности;	C, TO	КР1-8		TB
3.6 - основные приемы и технологии работы с различными видами информации	C, TO	KP1-8	ОЛР	TB

Освоенные умения			
У.1 - анализировать и объяснять природные явления и техногенные		ОЛР	П3
эффекты с позиций фундаментальных физических представлений;			
У.2 - указывать, какие законы описывают данное явление или эффект,	KP1-8	ОЛР	П3
выделять физическое содержание в прикладных задачах, проводить			
поиск и систематизацию соответствующей информации;			
У.3 - истолковывать смысл физических величин и понятий;	KP1-8	ОЛР	П3
У.4 - записывать уравнения для физических величин в системе СИ;	KP1-8		П3
У.5 - использовать основные понятия, законы и модели физики,	KP1-8		П3
оперировать ими для решения прикладных задач;			
У.6 - работать с приборами и оборудованием, использовать различные		ОЛР	ПЗ
методики измерений, обработки и интерпретации экспериментальных			
данных;			
У.7 - применять методы физико-математического анализа для решения	KP1-8	ОЛР	П3
прикладных задач, использовать адекватные методы физического и			
математического моделирования и расчета с применением			
программных средств			
Приобретенные владения			
В.1 - навыками использования основных общефизических законов и	КР1-8		К3
принципов в важнейших практических приложениях, методами			
решения типовых задач;			
В.2 - навыками применения основных методов физико-математического	KP1-8		КЗ
анализа и математической формализации для решения прикладных			
задач и поиска необходимой информации;			
В.3 - навыками правильной эксплуатации основных приборов и		ОЛР	
оборудования современной физической лаборатории;			
В.4 - навыками проведения научно-технического эксперимента,		ОЛР	К3
обработки, анализа и интерпретирования его результатов;			
В.5 - навыками использования методов физического и математического	KP1-8	ОЛР	К3
моделирования в инженерной практике, анализа и интерпретирования			
его результатов, в том числе с использованием прикладных			
программных средств;	74774 0		7.400
В.6 - навыками поиска, отбора, систематизации, анализа и обобщения	KP1-8		К3
научно-технической информации, ее интерпретации и представления в			
виде текстов, таблиц, графиков, диаграмм;			T40
В.7 - навыками самообучения и развития в общекультурной и			К3
профессиональной сферах			

C — собеседование по теме; TO — коллоквиум (теоретический опрос); OЛP — отчет по лабораторной работе; KP — контрольная работа; T — рубежное тестирование; TB — теоретический вопрос; TB — практическое задание; TB — комплексное задание.

Итоговой оценкой достижения результатов обучения по дисциплине является промежуточная аттестация в виде экзамена (1-ый семестр изучения дисциплины) и дифференцированный зачет (2-ой семестр изучения), проводимые с учетом результатов текущего и рубежного контроля.

2. Виды контроля, типовые контрольные задания и шкалы оценивания результатов обучения

Текущий контроль успеваемости имеет целью обеспечение максимальной эффективности учебного процесса, управление процессом формирования заданных компетенций обучаемых, повышение мотивации к учебе и предусматривает оценивание хода освоения дисциплины. В соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования — программам бакалавриата, специалитета и магистратуры в ПНИПУ предусмотрены следующие виды и периодичность текущего контроля успеваемости обучающихся:

- входной контроль, проверка исходного уровня подготовленности обучаемого и его соответствия предъявляемым требованиям для изучения данной дисциплины;
- текущий контроль усвоения материала (уровня освоения компонента «знать» заданных компетенций) на каждом групповом занятии и контроль посещаемости лекционных занятий;
- промежуточный и рубежный контроль освоения обучаемыми отдельных компонентов «знать», «уметь» заданных компетенций путем компьютерного или бланочного тестирования, контрольных опросов, контрольных работ (индивидуальных домашних заданий), защиты отчетов по лабораторным работам, рефератов, эссе и т.д.

Рубежный контроль по дисциплине проводится на следующей неделе после прохождения модуля дисциплины, а промежуточный — во время каждого контрольного мероприятия внутри модулей дисциплины;

- межсессионная аттестация, единовременное подведение итогов текущей успеваемости не менее одного раза в семестр по всем дисциплинам для каждого направления подготовки (специальности), курса, группы;
 - контроль остаточных знаний.

2.1. Текущий контроль усвоения материала

Текущий контроль усвоения материала в форме собеседования или выборочного теоретического опроса студентов проводится по каждой теме. Результаты по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

2.2. Рубежный контроль

Рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений и приобретенных владений (табл. 1.1) проводится в форме защиты лабораторных работ и рубежных контрольных работ (после изучения каждого модуля учебной дисциплины).

2.2.1. Защита лабораторных работ

Всего запланировано 12 лабораторных работ. Типовые темы лабораторных работ приведены в РПД.

Защита лабораторной работы проводится индивидуально каждым студентом или группой студентов. Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

2.2.2. Рубежная контрольная работа

Согласно РПД запланировано 8 контрольных работ (КР) после освоения студентами учебных модулей дисциплины.

Модуль 1. Механика.

Модуль 2. Колебания и волны.

Модуль 3. Статистическая физика и термодинамика.

Модуль 4. Электростатика и законы электрического тока.

Модуль 5. Магнетизм.

Модуль 6. Оптика.

Модуль 7. Квантовая физика.

Модуль 8. Ядерная физика.

работы Рубежные контрольные могут быть заменены рубежными компьютеризованными тестами эквивалентного содержания.

Типовые задания контрольной работы по модулю "Механика":

1 (1 балл). При каких приведенных ниже условиях движение материальной точки будет равномерным и прямолинейным?

Ответ:

1.
$$a_n \neq 0, a_\tau \neq 0.$$

2.
$$a_{\tau} = 0$$
, $a_n = 0$.

3.
$$a_{\tau} \neq 0$$
, $a_n = 0$.

4.
$$a_{\tau} = 0$$
, $a_n = const$.

2 (1,5 балла). Материальная точка движется по окружности радиусом R = 3.0 м согласно уравнению $S = 3t^2$ (S в м, t в с). Определить нормальное ускорение точки в момент времени t=1.0 с. Ответ:

1.
$$2,0 \text{ m/c}^2$$
. 2. $3,0 \text{ m/c}^2$. 3. $9,0 \text{ m/c}^2$. 4. 18 m/c^2 .

3 (1 балл). Маховик радиусом R=0.50 м вращается с постоянной угловой скоростью $\omega=4.0$ рад/с. Какова линейная скорость наружных точек маховика?

5. 8,0 м/с.

4 (1 балл). Маховик, бывший неподвижным, начал вращаться с угловым ускорением $\varepsilon = 2.0$ рад/с². Определить угол его поворота за 5,0 с.

Ответ:

- 1. 0,40 pad. 2. 5,0 pad. 3. 10 pad/ c^2 . 4. 50 pad.
- 5. Правильного, среди указанных ответов, нет.
- 5 (2 балла). Мячик массой 60 кг, падает на пол с высоты 1 м и подскакивает на высоту 0,50 м. Пренебрегая сопротивлением воздуха, определить среднюю силу удара мяча о пол, если известно, что продолжительность удара 0.10 c?

Ответ:

6 (1 балл). Тело массой m подвешено на упругой пружине с коэффициентом жесткости k. Найти величину растяжения пружины.

Ответ:

1.
$$mg$$
. 2. kmg . 3. $\frac{mg}{k}$.4. $\frac{km}{g}$ 5. $\frac{k}{mg}$

7 (1.5 балла). Шарик массой m, привязанный к нити длиной l, равномерно вращают в вертикальной плоскости со скоростью v. Найти натяжение нити, когда шарик находится в высшей точке окружности.

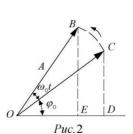
Ответ:

1.
$$mg$$
. 2. $m + .$ 3. $m \binom{v^2}{R} + g$. 4. $m \binom{v^2}{R} - g$. 5. $m \binom{v^2}{g - R}$.

8 (2балла). Груз массой m поднимают по наклонной плоскости длиной l и с углом наклона α с ускорением a. Коэффициент трения груза о плоскость равен к. Найти среди нижеприведенных выражений работу, совершенную приложенной внешней силой.

Ответ:

1.
$$m(a + k g \sin \alpha) l$$
. 2. $m(a + k g \cos \alpha) l$.


3.
$$m(a + g \sin \alpha) kl$$
. 4. $m(a + k g \sin \alpha + g \cos \alpha) l$.

5. $m(a + k g \cos\alpha + g \sin\alpha) l$.

Типовые задания контрольной работы по модулю "Колебания и волны":

1 (1,5 балла). Найдите фазу гармонически колеблющейся точки, спустя 0,10 с после начала движения, если частота колебаний 10 Гц? Начальная фаза равна нулю.

Omsem: 1. 100 pad. 2. 2π pad. 3. π pad. 4. $1/(2\pi)$ pad. 5. $(2\pi)/100$ pad.

2 (0.5 балла). Каким отрезком в векторной диаграмме, представленной на рис. 2, выражается смещение х от положения равновесия, если уравнение движения имеет вид $x = Asin(\omega_{0}t + \omega_{0})$. (OB = OC = A).

> Ответ: 1. OE. 2. OD. 3. BE. 4. *CD*.

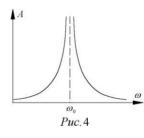
3 (1,5 балла). Гиря, подвешенная к пружине, колеблется по вертикали с амплитудой 4,0 см. Определите полную энергию колебаний гири, если коэффициент упругости пружины равен $1.0 \cdot 10^3$ H/м.

Ответ: 1. 0.40 Дж. 2. 0.80 Дж. 3. 20 Дж. 4. 8.0·10³ Дж. 5. 40 Дж.

Физический маятник (рис. 2) совершает гармонические колебания около положения равновесия по закону

$$\varphi = A\cos((\pi/8)t + \pi/3)$$
 рад.

Найти амплитуду, если при t=0 маятник был отклонен вправо на $\pi/20$ рад.


Ответ:.

1.
$$\frac{\pi}{10}$$
 pad. 2. $\frac{\pi}{8}$ pad. 3. $\frac{\pi}{6}$ pad. 4. $\frac{\pi}{2}$ pad. 5. π pad.

5 (1 балл). Какое из приведенных ниже уравнений представляет собой второй закон Ньютона для затухающих колебаний пружинного маятника?

Ответ:

1.
$$m\frac{d^2x}{dt^2} + kx = 0$$
.
2. $m\frac{d^2x}{dt^2} - kx = 0$.
3. $m\frac{d^2x}{dt^2} + r\frac{dx}{dt} + kx = 0$.
4. $m\frac{d^2x}{dt^2} - r\frac{dx}{dt} - kx = 0$.
5. $m\frac{d^2x}{dt^2} + r\frac{dx}{dt} - kx = 0$.

6 (1,5 балла). На рис. 4 изображен график зависимости амплитуды вынужденных колебаний пружинного маятника от циклической частоты, вынуждающей силы для колебаний без сопротивления. Сместится ли и, если да, то в какую сторону максимум кривой при увеличении коэффициента упругости пружины k?

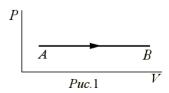
Ответ: 1. Не сместится.

- 2. Сместится влево.
- 3. Сместится вправо.

7 (2 балла). Поперечная волна распространяется вдоль упругого шнура со скоростью 15 м/с. Период колебаний точек шнура 1,2 с, амплитуда 2,0 см. За начало отсчета времени взят момент прохождения источником колебаний положения равновесия с положительной скоростью. Определите разность фаз колебаний двух точек шнура, отстоящих от источника волн на расстоянии 20 и 30 м.

Ombem: 1. 4.5π . 2. 3.2π . 3. 1.1π . 4. 0.67π . 5. 0.45π .

Типовые задания контрольной работы по модулю "Статистическая физика и термодинамика":


1 (2 балла). Объем некоторой массы идеального газа изобарически увеличился в 2 раза. Как изменилась средняя энергия поступательного движения одной молекулы газа?

Ответ: 1. Увеличилась в 4 раза. 4. Уменьшилась в 2 раза.

- 2. Уменьшилась в 4 раза. 5. Не изменилась.

- 3. Увеличилась в 2 раза.

2 (1 балл). Какой процесс с идеальным газом представлен на рис. 1? Состоянию А или В соответствует более высокая температура?

Ответ: 1. Изобарический, состоянию А.

- 2. Изобарический, состоянию В.
- 3. Изохорический, состоянию А.
- 4. Изотермический, состоянию В.
- 5. Адиабатический, состоянию В.

3 (1 балл). Какое из нижеприведенных давлений соответствует давлению P в уравнении Ван-дер-Ваальса

$$\left(P + \frac{a}{V_0^2}\right)\left(V_0 - b\right) = RT$$

Ответ: 1. Давление, которое было бы в газе, если бы в нем отсутствовало взаимодействие молекул между собой

- 2. Давление, оказываемое на газ стенками сосуда (равное давлению газа на стенки сосуда).
- 3. Давление, обусловленное взаимным притяжением молекул друг к другу.
- 4 (0,5 балла). Сколько степеней свободы имеет молекула одноатомного газа?

Ответ: 1. Две. 2. Три. 3. Четыре. 4. Пять. 5. Шесть.

5 (1 балл). Найдите число степеней свободы молекул идеального газа, если 3/5 энергии его теплового движения приходится на поступательное движение.

Ответ: 1. 3. 2. 4. 3. 5. 4. 6. 5. 7.

<u>6 (2 балла).</u> При адиабатическом расширении кислорода объем газа увеличился в 8 раз. Как и во сколько раз изменилось давление газа на стенки сосуда? (Кислород – двухатомный газ.)

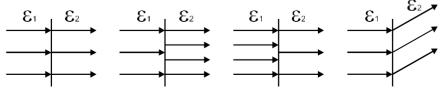
- *Ответ:* 1. Уменьшилось в $8^{0,4}$ раза.
 - 2. Увеличилось в 8^{0,4} раза.
 - 3. Уменьшилось в 8^{1,4} раза.
 - 4. Увеличилось в 8^{1,4} раза.

 $\frac{7}{2}$ (1 балл). Какое из выражений, приведенных ниже соответствует работе газа при изобарическом процессе?

8 (0.5 балла). Какое из приведенных ниже утверждений представляет собой формулировку второго начала термодинамики?

Ответ: 1. Теплота, подводимая к системе, идет на увеличение ее внутренней энергии и на работу, совершаемую системой против внешних сил.

- 2. Hевозможно построить тепловую машину, которая работала бы с $K\Pi I > 1$.
- 3. Невозможно построить тепловую машину, которая работала бы с КПД=1, т.е. КПД тепловой машины всегда меньше единицы.
- 4. Невозможно построить тепловую машину, которая совершила бы работу, большую, чем количество сообщенной ей извне энергии.
- 9 (1,5 балла). Какое из нижеприведенных выражений соответствует изменению энтропии газа при изобарическом переходе из состояния 1 в состояние 2?


$$1. \Delta S = \frac{m}{\mu} C_{V} \ln \frac{T_{2}}{T_{1}} \quad 3. \Delta S = \frac{m}{\mu} R \ln \frac{V_{2}}{V_{1}}$$
$$2. \Delta S = \frac{m}{\mu} C_{P} \ln \frac{T_{2}}{T_{1}} \quad 4. \Delta S = 0$$

Типовые задания контрольной работы по модулю "Электростатика"

1.~(1~балл).~C какой силой действуют два одноименных и равных заряда по $0.6\times10^{-8}~K$ л на каждый такой де третий заряд. помещенный на линии, соединяющей эти заряды, и на одинаковом расстоянии от каждого из них?

1.
$$3.2 \times 10^{-7}$$
 H. 2. 6.5×10^{-7} H. 3. 8.8×10^{-12} H. 4. 0

- 5. Условий задачи недостаточно, так как не задано расстояние между зарядами.
- 2. (1 балл). На каком из рисунков качественно верно нарисованы силовые линии напряженности электростатического поля \overrightarrow{E} при переходе из одной среды в другую, если граница раздела сред перпендикулярна к силовым линиям в первой среде ($\varepsilon_1 > \varepsilon_2$)?

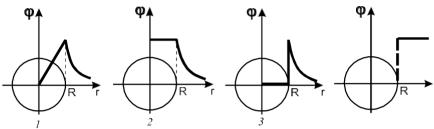
7

3. (1,5 балла). Какие из нижеуказанных соотношений являются той или иной формой записи теоремы Остроградского-Гаусса?

1.
$$\Phi_{E} = \oint_{s} E_{n}dS$$
. 2. $\Phi_{D} = \oint_{s} D_{n}dS$ 3. $\oint_{s} E_{n}dS = \frac{\sum_{i=1}^{n} q_{i}}{\mathcal{E}\mathcal{E}_{0}}$
4. $\oint_{s} \mathcal{D}dS = \sum_{i=1}^{n} q_{i}$ 5. $\Phi_{E} = \oint_{s} \mathcal{E} \cos\left(\underbrace{E}_{0}\right) dS$

4. (2 балла). Прямоугольная площадка со сторонами 0,02 м и 0,03 м находится на расстоянии 1,0 м от точечного заряда 1,0 мкКл. Площадка ориентирована так, что линии электрического смещения составляют с ней угол 30°. Найти поток электрического смещения через эту площадку.

1. $0.24 \times 10^{-10} \text{ Kл/м}^2$.


2.0.24×10⁻¹⁰ Кл.

 $3.0,15\times10^{-10}$ Кл/м².

4. 0.15×10⁻¹⁰ Кл.

5.0.61×10⁻¹² Кл.

5. (1,5 балла). Какой из нижеприведенных графиков выражает качественную зависимость потенциала от расстояния до уединенной металлической заряженной сферы радиуса R?

6. (0,5 балла). Какое из нижеприведенных соотношений есть определительная формула емкости уединенного проводника?

$$1. C = \frac{q}{\varphi_1 - \varphi_2} .$$

2.
$$C = \frac{\mathcal{E}\mathcal{E}_0 S}{d}$$
.

3.
$$C = \frac{q}{\Phi}$$
.

2.
$$C = \frac{\mathbf{\varepsilon} \mathbf{\varepsilon}_0 S}{d}$$
4.
$$C = \frac{q^2}{2W}$$

7. (1,5 балла). Три одинаковых плоских конденсатора соединены последовательно. Ёмкость такой батареи 9.0×10^{-11} Ф. Площадь каждой пластины 100 см^2 , диэлектрик – стекло (ε =7,0), занимающее всè пространство между пластинами. Определить толщину стекла в каждом из конденсаторов.

1. 2,0×10⁻⁵ м.

2. 0,3×10⁻⁴ м.

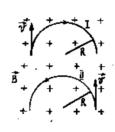

3. 7.0×10⁻³ м.

4. 3,3×10⁻³ м.

5. 2,3×10⁻³ м.

Типовые задания контрольной работы по модулю "Магнетизм":

1 (1.5 балла). Укажите все случаи, когда напряженность магнитного поля в точке А направлена за плоскость рисунка. Учтите, что $I_1 = I_2$.



2 (0.5 балла). На рисунке изображена рамка с током, помещенная в однородное магнитное поле. Как направлен момент магнитных сил, действующих на рамку?

- 1. По оси вращения ОО вверх.
- По оси вращения ОО вниз.
- По нормали к рамке п.
- По направлению магнитной индукции В.

- 3 (1.5 балла). Проволочный виток на кардановом полвесе может занять любое положение в пространстве. Площадь витка $S=25~{\rm cm}^2$. Его расположили в однородном магнитном поле с индукцией $B=0.80~{\rm Tn}$ так, что плоскость витка составила угол $\alpha = 60$ градусов с направлением поля. По витку пустили ток I = 2,0 мА. Найти вращающий момент, действующий на виток. Вокруг какой оси начинает вращаться виток под действием этого момента?
 - 1. 20-10-7 Н:м; вокруг оси, совпадающей с нормалью п к витку.
 - 2. $20.10^{-7} \, H$ -м; вокруг оси, перпендикулярной к $n \, u \, B$.
 - 3. $35 \cdot 10^{-7} \, H$ ·м; вокруг оси, совпадающей с B.
 - 4. $35\cdot 10^{-7} \, H\cdot M$; вокруг оси, перпендикулярной к $n \, u \, B$.
 - 35 H-м; вокруг оси, совпадающей с B.
 - 4 (2 балла). Две заряженные частицы, имеющие одинаковые скорости, попадают в однородное магнитное поле,

 $\mathbf{V} \perp B$. Направления движения частиц вдоль траекторий, причем так, что представляющих собой части окружностей одинакового радиуса, противоположны (см. рис.). На какие вопросы вы ответите «да»?

- 1. Является ли частица, движущаяся по траектории I положительной, а по траектории II – отрицательной?
- 2.~Является ли частица, движущаяся по траектории <math>I отрицательной, а по траектории II – положительной?
- 3. Совпадают ли удельные заряды частиц по величине?
- 4. Совпадают ли периоды вращения частиц?
- 5 (1 балл). Определить магнитный поток, пронизывающий шаровую поверхность радиусом R, расположенную в однородном магнитном поле с индукцией В.
 - 1. $4\pi R^2 B$
- $2. \pi R^2 B$
- $3.2\pi RB$
- 4. 0
- 6 (1 балл). Что нужно поставить вместо многоточия в предложении: "Физическая величина, численно равная отношению силы, действующей на проводник с током, расположенный перпендикулярно к силовым линиям магнитного поля, к длине проводника и к току в нем, есть ... "?
 - 1. ... магнитный поток.
 - ... напряженность магнитного поля.
 - ... ЭДС индукиии.
 - ... магнитная индукиия.
 - ... индуктивность.
- 7 (1 балл). Выберите из перечисленных ниже физических величин все те, от которых зависит индуктивность катушки с железным сердечником.
 - 1. Число витков на единицу длины катушки.
 - 2. Сила тока в катушке.
 - 3. Объем катушки.
 - Омическое сопротивление обмотки катушки.
- 8 (1,5 балла). По соленоиду длинной l=1,0 м, с числом витков N=500 и площадью сечения S=50 см² течет ток I = 5.0 А. Какова энергия магнитного поля соленоида?
 - 1. 2,0·10⁻² Дж 2. 2,0 Дж
- 3. 4,0 Дж
- 4. 8,0 Дж
- 5. 12 Дж

Типовые задания контрольной работы по модулю "Оптика":

- 1. (1,0 балла). Определить длину l_0 отрезка, на котором укладывается столько же длин волн в вакууме, сколько их укладывается на отрезке $l_0=2,0$ мм в воде (n=1,33).
 - 1. 2,7 мм.
- 2. 1,5 мм.
- 4. Задача не определена, так как не задана длина волны света.
- 2. (1,0 балла). На рисунке изображена установка для наблюдения колец Ньютона. Какова разность хода двух $\frac{1}{2}$... Наблюдение ведèтся в отражèнном свете. 1. 2b. 2. 2h. 3. $b+\frac{\lambda}{2}$ 4. $2b+\frac{\lambda}{2}$ 5. $2h+\frac{\lambda}{2}$ Какова разность хода двух лучей, дающих некоторую точку кольца радиусом r_k .

- 3. (1,5 балла). Пучок монохроматического света падает нормально на диафрагму с круглым отверстием. На экране наблюдается дифракционная картина со светлым пятном в центре, так как для центра в открытой диафрагмой части волнового фронта уложилось пять зон Френеля. Как изменится интенсивность света в центре, если перекрыть вторую и четвертую зону Френеля? Амплитуды колебаний вектора E от всех зон считать одинаковыми.
 - 1. Уменьшится в 5/3 раза.
- 2. Уменьшится в $(5/3)^2$ раза.
- 3. Не изменится.
- 4. Увеличится в 3 раза.
- 5. Увеличится в 9 раз.
- 4. (1,5 балла). Какие изменения претерпит дифракционная картина, если источник белого света, дифракционную решетку и экран поместить в воду? Углы дифракции для видимых спектров на экране считать малыми и принять $sin \phi \approx \phi$.
 - 1. Спектры сместятся к центральной белой полосе, но ширина каждого спектра не изменится.
 - 2. Спектры удалятся от центральной белой полосы, но ширина каждого спектра не изменится.
 - 3. Спектры сместятся к центральной белой полосе, и ширина каждого спектра уменьшится.
 - 4. Спектры удалятся от центральной белой полосы, и ширина каждого спектра увеличится.
 - 5. Спектры сместятся к иентральной белой полосе, и ширина каждого спектра увеличится.
- 5. (2,0 балла). Какое фокусное расстояние должна иметь линза, проецирующая на экран спектр, полученный при помощи дифракционной решетки, чтобы расстояние между двумя линиями калия (λ_1 =404,4 нм, λ_2 =404,7 нм) в спектре первого порядка было равно 0,10 мм? Период решетки 2,0 мкм.
 - 1. 0,50 м.
- 2. 0,65 м.
- 3. 0,75 м.
- 4. 1.0 м.
- 6. (0,5 балла). Какая из приведенных ниже величин дает степень поляризации луча, если I_{max} и I_{min} максимальная и минимальная интенсивности света в поле зрения анализатора при вращении его вокруг анализируемого луча?

- 1. $\frac{I_{max} I_{min}}{I_{max}}$. 2. $\frac{I_{max} + I_{min}}{I_{max}}$. 3. $\frac{I_{max} + I_{min}}{2}$. 4. $\frac{I_{max} + I_{min}}{I_{max} I_{min}}$. 5. $\frac{I_{max} I_{min}}{I_{max} + I_{min}}$.
- 7. (1,5 балла). Угол Брюстера при падении света на кристалл каменной соли равен 57°. Определить скорость света в этом кристалле.
 - 1. $0.87 \times 10^8 \text{ m/c}$. 2. $1.2 \times 10^8 \text{ m/c}$. 3. $1.6 \times 10^8 \text{ m/c}$. 4. $1.9 \times 10^8 \text{ m/c}$. 5. $2.6 \times 10^8 \text{ m/c}$.

- 8. (1,0 балла). Угол между плоскостями поляризатора и анализатора равен 45°. Во сколько раз уменьшится интенсивность света, выходящего из анализатора, если угол увеличить до 60°?
 - 1. Не уменьшится.
- 2. В 1,3 раза.
- 3. В 1,5 раза.

- 4. В 1,8 раза.
- 5. *В* 2,0 раза.

Типовые задания контрольной работы по модулю "Атомная и ядерная физика":

- Какое из нижеописанных выражений представляет собой один из постулатов Бора (условие частот)?
 - 1) $v = R(1/1^2 1/n^2_2)$
 - 2) $\nu = (E_{n2} E_{n1}) / h$
 - 3) $v = (E_{n2} + E_{n1}) / h$
 - 4) $v = R(1/n^2 1/n^2)$
 - 5) $\varepsilon = hv$.
- II Известно, что спектральные линии данной серии спектра водорода укладываются в формулу $v = R(1/n^2 1/n^2)$. Какие значения принимает n_2 , если $n_1=3$.
 - 1) $n_2 = 1, 2, 3, 4, ...$
 - 2) $n_2 = 1, 2, 3$.
 - 3) $n_2 = 4, 5, 6, ...$
 - 4) $n_2 = 4, 6, 8, 10, ...$
 - 5) $n_2 = (4+n_1), (5+n_1), (6+n_1).$
- III Каким из квантовых чисел (кв.ч.) определяется (в основном) энергия электрона?
 - Главным кв. ч.
 - 2) Азимутальным кв. ч.

- 3) Магнитным кв. ч.
- 4) Спиновым кв. ч.
- IV Основное электронное состояние атома химического элемента выражено следующей символической формулой: $1s^22s^22p^63s^23p^64s^1$. Указать? сколько электронов атома находится в состоянии с квантовыми числами n=3, l=0.

- V Электрон прошел ускоряющую разность потенциалов U = 50 В. Которой из нижеприведенных формул следует воспользоваться для нахождения длины волны де Бройля, связанной с электроном? В формулах $E_0 = m_0 * c^2$ энергия покоящегося электрона, V его скорость, T кинетическая энергия электрона.
 - 1) $\lambda = h/(m_0 * c)$
 - 2) $\lambda = h/\sqrt{(2m_0*T)}$
 - 3) $\lambda = (h*c)/\sqrt{T}(2E_0+T)$
 - 4) $\lambda = h/(m_0 V) * \sqrt{(1 V^2/c^2)}$
 - 5) правильного ответа нет
- VI Каков смысл параметра U в уравнении Шредингера

$$\Delta \Psi + 2m/h2 * (E-U)\Psi = 0$$

- 1) Полная энергия частицы.
- 2) Постоянный безразмерный коэффициент.
- 3) Кинетическая энергия частицы.
- 4) Потенциальная энергия частицы.
- 5) Правильного ответа нет.
- VII Что представляют собой γ-лучи, испускаемые при радиоактивном распаде?
 - 1) Поток ядер гелия.
 - 2) Поток протонов.
 - 3) Поток электронов.
 - 4) Поток нейтронов.
 - 5) Электромагнитные волны.

VIIIОпределить в мегаэлектронвольтах энергию, которая выделяется при реакции

$$_{5}B^{10} + _{0}n^{1} \rightarrow _{5}B^{11} \rightarrow _{3}Li^{7} + _{2}He^{4},$$

если m_B =10.01613 а.е.м., m_{He} =7.01822 а.е.м., m_{Li} =4.00390 а.е.м.

- 1) 2,79 MэВ
- 2) 3,00*10-17 МэВ
- **3)** 0,279 МэВ
- **4)** 1,68*1027 МэВ
- 5) Правильного ответа среди указанных выше нет.

Типовые шкала и критерии оценки результатов рубежного контроля приведены в общей части ФОС образовательной программы.

2.3. Выполнение комплексного индивидуального задания на самостоятельную работу

Для оценивания навыков и опыта деятельности (владения), как результата обучения по дисциплине, не имеющей курсового проекта или работы, используется индивидуальное комплексное задание студенту.

Типовые шкала и критерии оценки результатов защиты индивидуального комплексного задания приведены в общей части ФОС образовательной программы.

2.4. Промежуточная аттестация (итоговый контроль)

Допуск к промежуточной аттестации осуществляется по результатам текущего и рубежного контроля. Условиями допуска являются успешная сдача всех лабораторных работ и положительная интегральная оценка по результатам текущего и рубежного контроля.

2.4.1. Процедура промежуточной аттестации

Промежуточная аттестация, согласно РПД, проводится в виде экзамена по дисциплине устно по билетам. Билет включает два теоретических вопроса для

проверки усвоенных знаний, практическое задание (ПЗ) для проверки освоенных умений и комплексное задание (КЗ) для контроля уровня приобретенных владений всех заявленных компетенций.

Билет формируется таким образом, чтобы в него попали вопросы и задания, контролирующие уровень сформированности заявленных компетенций. Форма билета представлена в общей части ФОС образовательной программы.

2.4.2. Типовые вопросы и задания для экзамена по дисциплине

Типовые вопросы для контроля усвоенных знаний:


1. Равномерное движение описывает уравнение ...

(*):
$$x = 2 + 3t$$
 (): $v_x = 2t^2$ (): $x = 2t^2$

():
$$x = 6 + 6t - 2t^2$$

():
$$v_x = 2t$$

- 2. Гармоническими называются колебания, при которых ...
- (*): изменение всех физических величин со временем происходит по закону sin или соя
- (): тело многократно проходит одно и то же устойчивое положение равновесия
- (): значения всех физических величин повторяются через равные промежутки времени
- (): изменение всех физических величин со временем происходит по закону tg или ctg
- 3. Материальная точка совершает гармонические колебания с частотой 0,5 Гц. Амплитуда колебаний 3 см. Скорость точки в момент времени, когда смещение 1,5 см, равна ... см/с.
- 4. Индукция магнитного поля направлена из чертежа. Правильное положение силы Ампера, действующей на проводник с током, имеет вид ...

5. Диапазон длин волн видимого света ...

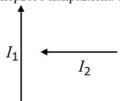
(*):
$$4 \cdot 10^{-7} - 7.6 \cdot 10^{-7} \,\mathrm{m}$$
 $10^{-9} - 4 \cdot 10^{-7} \,\mathrm{m}$ $7.6 \cdot 10^{-7} - 10^{-4} \,\mathrm{m}$ $6 \cdot 10^{-12} - 10^{-9} \,\mathrm{m}$

$$10^{-9} - 4.10^{-7}$$
 N

$$6 \cdot 10^{-12} - 10^{-9} \,\mathrm{M}$$

6. Закон смещения Вина имеет вид ...

(*):
$$\lambda_{\max} = \frac{b}{T}$$
 $\lambda_{\max} / T = b$ $R_e = \sigma T^4$ $R_{\lambda,T} = r_{\lambda,T}^*$ $\lambda_{\max} \cdot T^2 = b$


$$R_e = \sigma T$$

$$R_{\lambda,T}$$
 $A_{\lambda,T} = r_{\lambda,T}^*$

$$\lambda_{\max} \cdot T^2 = \ell$$

Типовые вопросы и практические задания для контроля освоенных умений:

- 1. Тело, брошенное вертикально вверх, поднялось на высоту h = 20 м. Для этого скорость бросания тела должна быть равна ... м/с.
- $x = 7\sin(0.5\pi t)$ см. После начала 2. Материальная точка совершает гармонические колебания по закону движения путь от положения равновесия до максимального смещения точка пройдет за ... с.
- 3. Средняя квадратичная скорость молекул воздуха ($\mu = 0.029$ кг/моль) при температуре t = 17 °C равна ... м/с.
- 4. Два проводника с токами находятся в плоскости чертежа. Сила, действующая на второй проводник со стороны первого направлена ...

- вверх за чертеж О из чертежа О влево
- 5. Если радиостанция работает на частоте 102,7 МГц, то еè длина волны ... см. Ответ округлить до целого.
- 6. Максимум излучательной способности тела человека ($t = 36.6^{\circ}$ C) приходится на длину волны ... мкм. Ответ округлить до десятых.

Типовые комплексные задания для контроля приобретенных владений:

1. Тело брошено под углом к горизонту 45° с начальной скоростью 20 м/с. На расстоянии 20 м (по горизонтали) от места бросания высота траектории составляет ... м.

- 2. Материальная точка совершает гармонические колебания с частотой 0,5 Γ ц. Амплитуда колебаний 3 см. Скорость точки в момент времени, когда смещение 1,5 см, равна ... см/с.
- 3. Энергия *вращательного движения* молекул, содержащихся в 1 г азота ($\mu = 28$ г/моль) при температуре 7 °C равна ... Дж.
- 4. Проводник с током 5,0 A длиной 10 см перемещают в магнитном поле с индукцией 0,6 Тл. Проводник перпендикулярен полю и перемещается в сторону, противоположную силе Ампера, действующей на него. Чтобы проводник двигался со скоростью 20 м/с необходимо развить мощность равную ... Вт.
- 5. Колебательный контур радиоприемника имеет конденсатор с емкостью 750 пФ и катушку с индуктивностью 13,4 мкГн. Этот радиоприемник будет принимать волны электромагнитных колебаний с длиной равной ... м. Ответ округлить до целого. ($\pi = 3,14$, скорость света $c = 3 \cdot 10^8$ м/с)
- 6. Из отверстия в печи площадью $10~{\rm cm}^2~$ излучается $241~{\rm кДж}$ энергии за 1~ минуту. Отверстие считать абсолютно черным телом. Длина волны, на которую приходится максимум излучательной способности, равна ... мкм. Ответ округлить до целого.

Полный перечень теоретических вопросов и практических заданий в форме утвержденного комплекта экзаменационных билетов хранится на выпускающей кафедре.

2.4.3. Шкалы оценивания результатов обучения на экзамене

Оценка результатов обучения по дисциплине в форме уровня сформированности компонентов *знать*, *уметь*, *владеть* заявленных компетенций проводится по 4-х балльной шкале оценивания путем выборочного контроля во время экзамена.

Типовые шкала и критерии оценки результатов обучения при сдаче экзамена для компонентов *знать*, *уметь и владеть* приведены в общей части ФОС образовательной программы.

3. Критерии оценивания уровня сформированности компонентов и компетенций

3.1. Оценка уровня сформированности компонентов компетенций

При оценке уровня сформированности компетенций в рамках выборочного контроля на экзамене считается, что полученная оценка за компонент проверяемой в билете компетенции обобщается на соответствующий компонент всех компетенций, формируемых в рамках данной учебной дисциплины.

Типовые критерии и шкалы оценивания уровня сформированности компонентов компетенций приведены в общей части ФОС образовательной программы.

3.2. Оценка уровня сформированности компетенций

Общая оценка уровня сформированности всех компетенций проводится путем агрегирования оценок, полученных студентом за каждый компонент формируемых компетенций, с учетом результатов текущего и рубежного контроля в виде интегральной оценки по 4-х балльной шкале. Все результаты контроля заносятся в оценочный лист и заполняются преподавателем по итогам промежуточной аттестации.

Форма оценочного листа и требования к его заполнению приведены в общей части ФОС образовательной программы.

При формировании итоговой оценки промежуточной аттестации в виде экзамена используются типовые критерии, приведенные в общей части ФОС образовательной программы.